数字孪生赋能智慧能源

发布时间:2022-07-26

编辑人:灵图互动

阅读量:184

全球能源行业顺应数字化时代不断发展,我国电力体制改革深入推进,在这一背景下加快能源转型已成为行业共识。但能源行业存在着体制、技术与市场壁垒,使得能源转型面临挑战。国家能源局提出智慧能源战略,建设互联互通、透明开放、互惠共享的能源共享平台,以期解决能源行业普遍存在的壁垒问题。数字孪生技术可在物理世界和数字世界之间建立精准的联系,有助于解决智慧能源发展所面临的技术难题,支持从多角度对能源互连网络进行精确仿真和控制。

1. 面向智慧能源系统的数字孪生概念和架构

1.1 面向智慧能源系统的数字孪生技术概念

数字孪生技术早期被运用在国防军工及航空航天领域,其基本理念是由 Grieves 教授 2003 年在产品生命周期管理课程上提出 。对数字孪生技术概念给出定义,则要追溯到 2009 年美国空军研究实验室(AFRL)提出的飞机机身数字孪生定义。2009—2019 年科研机构对数字孪生技术所给出的定义见表 1。

数字孪生概念

综合各类定义描述,面向智慧能源工程应用,概括数字孪生的定义如下:数字孪生技术充分利用精细化物理模型、智能传感器数据、运维历史等数据,集成电、磁、热、流体等多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成对智慧能源系统的映射;数字孪生实例反映对应智能设备的全生命周期过程,能够实时更新与动态演化,进而实现对智慧能源系统的真实映射。

1.2 面向智慧能源系统的数字孪生架构及特点

结合数字孪生的通用架构,本文给出了数字孪生在智慧能源系统中的架构,针对智慧能源系统的特点该架构分为五部分(见图 1):物理层、数据层、机理层、表现层和交互层。数据层首先从物理层中收集大量数据,然后进行预处理并传输;机理层从数据层接收多尺度数据(包括历史数据和实时数据),通过“数据链”输入仿真模型后进行数据整合和模拟运算;表现层获得机理层仿真的结果,以“沉浸式”方式展现给用户;交互层可以实现精准的人机交互,交互指令可以反馈至物理层对物理设备进行控制,也可以作用于机理层实现仿真模型的更新和迭代生长。相应层次的特点具体阐述如下。

面向智慧能源系统的数字孪生架构

图 1 面向智慧能源系统的数字孪生架构

1.2.1 物理层

常规的能源系统状态监测,首先在能源设备上安装传感器,然后由数据采集软件汇总,但分散的数据采集系统交互困难。物理层基于能源物联网平台,在各智能设备中应用先进传感器技术收集系统运行的多模异构数据,集成了物理感知数据、模型生成数据、虚实融合数据等海量数据;支持跨接口、跨协议、跨平台交互,可实现能源系统中各子系统的互联互通。

1.2.2 数据层

常规的能源系统状态监测只关注传感器本身数据,而数字孪生更关注贯穿智能设备全生命周期的多维度相关数据。数据层在各智能设备本地侧对数据进行实时清洗和规范化,采用高速率、大容量、低延迟的通信线路进行数据传输;同时依托云计算和数据中心,动态地满足各种计算、存储与运行需求。

1.2.3 机理层

数字孪生所构建的智慧能源系统仿真模型使用了“模型驱动 + 数据驱动”的混合建模技术,采用基于模型的系统工程建模方法学,以“数据链”为主线,结合 AI 技术对系统模型进行迭代更新和优化,以实现真实的虚拟映射。这一模型对智能设备的选型、设计和生产制造都有指导价值,而不仅限于根据数据变化来决定能源设备是否需要检修或更换。

1.2.4 表现层

数字孪生技术应用虚拟现实(VR)、增强现实(AR)以及混合现实(MR)的 3R 技术,建立可视化程度极高的智慧能源系统虚拟模型,提升了可视化展示效果。利用计算机生成视、听、嗅等感官信号,将现实与虚拟的信息融为一体,增强用户在虚拟世界中的体验感和参与感,辅助技术人员更为直观、高效地洞悉智能设备蕴含的信息和联系。

1.2.5 交互层

基于数字孪生的智慧能源系统虚拟模型不再仅仅是传统的平面式展示或简单三维展示,而是实现用户与模型之间的实时深度交互。利用语音、姿态、视觉追踪等技术,建立用户与智能设备之间的通道,实现多通道交互体系来进行精准交互,以支持对电力网、燃气网、热力网、交通网、供水网等多能耦合的能源系统的高效精准控制和交互。

整体来看,数字孪生既不是对物理系统进行单纯的数值模拟仿真,也不是进行常规的状态感知,更不是仅仅进行简单的 AI、机器学习等数据分析,而是将这三方面的技术都有机整合于其中。数字孪生对能源系统进行数字化建模,并在数字空间与物理空间实现信息交互;首先应用完整信息和明确机理预测未来,再发展到基于不完全信息和不确定性机理推测未来,最终实现能源系统的数字孪生体之间共享智慧、共同进化的孪生共智状态。

2. 面向智慧能源系统的数字孪生关键技术

2.1 云端–边缘端协同的数字孪生服务平台

智慧能源系统包含了众多领域的物理设备,数据采集向多样化发展,且数据量呈指数级增长。常规的数据服务平台已无法满足对数据进行快速准确处理的要求,亟需构建云端–边缘端协同的数字孪生服务平台。边缘端需要利用智能设备进行一部分本地计算,云端则要求将各设备的数据整合后进行运算。通过建立“数据链”、通用算法库和模型库,实现多源异构数据分析任务的高效协同分工,从而为数字孪生的应用奠定基础。

2.1.1 智慧能源系统的“数据链”设计

智慧能源系统各个设备组件的设计结构、制造工艺、性能参数、运行参数等,对系统运行服务均会产生影响。基于数据采集、传输、分析和输出的全过程“数据链”设计,需要挖掘“数据链”与全生命周期过程的映射关系,通过研究“数据链”与设计云、生产云、知识云、检测云、服务云中的实体与虚体关联关系,利用数据库和机器学习智能算法,形成全生命周期“数据链”的描述与设计方法。图 2 给出了“数据链”中设备数据的采集、传输和分析的过程,用于实现数据的纵向贯通和知识的闭环精准交互。

 “数据链”中设备数据的采集、传输和分析

图 2 “数据链”中设备数据的采集、传输和分析

注:Zigbee 代表紫蜂协议;SQL 代表结构化查询语言。

2.1.2 云端和边缘端服务的通用智能算法库

建立精确、可动态拓展的云端和边缘端服务的智能算法库,以加快智慧能源系统分布式计算的速度,实现对网络、计算、存储等计算机资源的高效利用。该算法库是一个体系合理、测试完整且验证充分的智慧能源系统通用智能算法库,包括数据清洗算法子库、性能退化特征提取算法子库和状态趋势预测算法子库等。尤为核心的是,基于边缘端–云端协同体系的专业算法应用部署,可实现专业算法的实例化验证和迭代生长。

2.1.3 智慧能源系统设备的通用精细化模型库

智慧能源系统设备的精细化模型库将有助于实现对模型的精细化和个性化建模。构建云端–边缘端的数据交互机制,为数字孪生模型提供所要求的数据及交互接口,实现数据的纵向贯通。研究云端和边缘端多维数据约简合并技术,设计复杂事件处理引擎,开发能源系统模型库,实现服务的横向融合。

2.2 智慧能源系统的高效仿真与混合建模技术

智慧能源系统由机械、电气和信息等多系统组成,需要从多物理场和多尺度的角度进行全面、综合、真实地建模和仿真。通过虚实信息的传递并加载到数字孪生模型上,构建“模型驱动 + 数据驱动”的混合驱动方式进行高逼近仿真,在虚拟环境中实现能源系统复杂工况下部件级及系统级性能的预测与分析。

2.2.1 基于多物理场和多尺度的建模与仿真技术

鉴于智慧能源系统的复杂性,技术人员不能只考虑单个物理场效应或一维尺度数据,不能忽略多物理场和多尺度之间的耦合关系。应用有限元仿真软件构建包括电、热、磁、力在内的多物理场和体现历史、实时和未来效应的多尺度的仿真模型,支持技术人员从不同的角度对智慧能源系统的仿真模型进行分析与评价。

2.2.2 基于“模型驱动 + 数据驱动”的建模技术

智慧能源系统的不确定性和复杂化现象突出,而现有状态分析一般采用事先建立的简化机理模型,在实际应用中引入简化的约束,由此导致在复杂环境下无法获得满足性能要求的模型。常规的数据驱动方法不能描述客观物理规律约束,故单独运用模型驱动或数据驱动的方法均不能满足能源系统的智能化和时效性需求。基于“模型驱动 + 数据驱动”的混合建模技术,通过类别均衡算法、策略网络和价值网络数据学习,克服原始数据类别不均衡和缺失的问题。基于代价敏感学习和机器学习的反演和参数识别方法,克服机理模型难以建模且忽略部分特征的缺点。运用混合建模技术的集成学习算法,提高系统运行状态评价方法的泛化能力。

2.3 数字孪生技术的信息安全防御机制

智慧能源系统是一个由信息网络连接各子系统的复杂系统,具有高度网络依赖性。信息交流的可靠与否决定了系统能否正常运行,任何设备的安全问题都可能引发系统数据泄露。针对智慧能源系统面临的恶意解析和篡改风险,需要研究网络攻击检测与防御技术,增强智慧能源系统运行的安全性。

2.3.1 基于底层分类模块的多模型检测技术

基于智慧能源系统终端传输的多源传感信息,提升 AI 算法对量测信息攻击行为特征的挖掘能力,并强化模型的泛化能力。针对多种分类模型的底层增量式分类器库,构建分类结果集成输出模块,实现对数据完整性攻击的精准检测。

2.3.2 构建与数据完整性攻击相关的特征属性集

挖掘面向智慧能源系统的数字孪生模型及参数时空耦合物理特征,针对智能终端传输的包含多源异构信息的网络数据,研发基于 AI 的特征提取算法,动态优化选取与数据完整性攻击相关的最优特征属性集,进而提取其深层次模型特征。

2.3.3 建立安全风险评估准入机制

基于 AI、统计学和信息论的方法,建立安全风险评估准入机制。对接入智慧能源系统的各子系统进行大数据分析,对各子系统的信息安全进行风险量化。当子系统的风险数值高于某个设定的阈值时,限制该子系统的准入,从而实现基于安全风险评估的访问控制。

2.4 “沉浸式”智慧能源系统可视化和交互技术

有别于常规数学仿真模型,数字孪生模型强调虚实之间的交互,能实时更新与动态演化,从而实现对物理世界的动态真实映射。“沉浸式”可视化技术,可以帮助用户更清晰、更透彻、更丰富地认识世界,分为算法可视化和模型可视化。

2.4.1 智慧能源系统算法应用结果的可视化技术

数据孪生模型的可视化技术既包括典型的可视化技术,如图形化展示、查询、参数更新接口等,也包括图形化展示组件属性数据、状态数据、预测与评估数据。通过组件属性和组件间关联的图形界面与组件模型接口进行可视化和交互。

2.4.2 基于 3R 技术的人机交互技术

常规仿真模型的展现方式偏向于平面式的展示,局限于通过大量的图表来向用户展现物理实体的状态。基于 3R 交互技术,运用可视化展示组件,可模拟三维虚拟空间,将智慧能源系统中的物理设备以近乎真实的状态展现在用户面前。通过对虚拟体的操作与控制,间接实现对物理实体、信息网络、仿真模型的操作与控制,极大扩展用户的感官体验,获得系统运行的真实反馈。

2.5 可扩展数字孪生技术的应用新模式

数字孪生交互技术的实现,提升了人机之间的交互能力。该技术可以结合虚拟体的仿真结果,为物理实体增加或扩展新的能力,实现对设计端和运维端的反馈与控制,最终完成对设备物理实体和虚拟仿真体的精确描述与行为预测;在此基础上可以提供一系列数字孪生技术的应用新模式。

2.5.1 基于数字孪生的智慧能源系统运维新模式

在可扩展的“虚实同步”智慧能源系统运维服务平台基础上,梳理典型智慧能源系统全生命周期运维需求;针对个性化需求,研发定制化运维服务的移动应用程序(APP),形成多种远程运维新模式。例如,针对智慧能源系统中的新产品研发周期长、试验费用高的问题,研发远程虚拟仿真试验技术,探索试验检测服务新模式。

2.5.2 面向智慧能源系统应用的 APP

智慧能源系统具有多领域、多层次、多单元的多维异构特点,深度交互式的 APP 应用能提高智慧能源系统设备的管理和优化控制能力。

2.5.3 智慧能源系统设备管理 APP

智慧能源系统设备管理 APP 包括设备设置、地图、数据管理、维保管理等模块,具有设备的注册、参数配置,设备定位、设备状态展示,设备历史数据查询、警报查询,设备维保历史记录、维保单分派、服务质量管理,系统报警设定、系统日志等功能,从而实现设备的全生命周期管理。

2.5.4 智慧能源系统设备优化控制 APP

设备优化控制 APP 包括设备数据源模块、设备资产分析模块、状态检修智能辅助决策模块、设备状态评估模块和控制指令下发模块。APP 根据能源设备的负荷情况进行实时控制,实现智能增效,提高设备利用率和系统稳定性;同时以能源设备为对象,使用集群管理来提供寿命健康预测、故障预测和诊断等增值服务。

3. 智慧能源系统的数字孪生生态构建

面向智慧能源系统的数字孪生技术贯穿于能源生产、传输、存储、消费、交易等环节,有助于打破能源行业的时间和空间限制,促进各种业务的全方位整合与统一调度管理;横向联合能源行业参与主体之间的业务,提高能源利用效率。梳理形成智慧能源行业的数字孪生技术生态圈(见图 3),按照能源系统的全生命周期过程将之划分为六部分:能源生产、能源传输、能源分配、能源消费、能源存储和能源市场。随着各部分之间交互的不断加深,逐步实现基于数字孪生技术的智慧能源行业可持续发展。针对数字孪生技术应用,对智慧能源行业的 6 个参与主体概括阐述如下 。

智慧能源行业的数字孪生技术生态圈

图 3 智慧能源行业的数字孪生技术生态圈

3.1 能源生产

借助云端–边缘端协同的数字孪生服务平台,能实现能源生产高效转换。通过建立虚实映射的仿真模型,实时对能源生产机组的运行状态和运行环境等进行监控和模拟仿真运行,及时制定各能源生产机组的最优运行策略;同时应用运行数据中提取的特征来优化设备生产设计方案,包括数字孪生风机、多物理场光伏模型和数字化电厂等。

3.2 能源传输

由于能源空间分布失衡,我国部分区域能源资源匮乏,需要依赖能源传输以保障能源安全。数字孪生技术可以提升能源传输过程中的控制和优化能力 [19]。应用数字孪生技术,对直流输电网中的柔直模块化多电平换流器进行数字孪生建模,以实现对能源传输的优化和升级。针对用于电能传输的电缆等设备,应用数字孪生技术进行虚实映射的数字化建模,指导电缆设备的全生命周期设计,以提高设备的运行性能和增长设备的使用寿命。数字孪生电网在虚拟实体中可以实现多物理场和多尺度的仿真,使管理人员更真实地了解输电设备的运行状况和各节点的负荷状况,通过大数据和智能算法实时监控电网并及时对电网可能出现的问题进行预警。

3.3 能源分配

能源路由器的研发尚处于起步阶段,运用数字孪生技术对能源路由器建立虚拟模型并进行大数据模拟分析,进而指导设备的生产设计,大大缩短设备的研发周期。针对能源分配环节存在的大量变电设备,采用数字孪生技术将变电站设备实例化,在智能机器人与智能安全监测设备的辅助下,实现海量数据与物理设备的关联映射,在可视化平台进行实时展现,形成数字孪生变电站,提升能源分配的经济性和安全性。

3.4 能源消费

数字孪生由虚到实的理念,将助力设计师突破传统的制造工艺限制来实现全新设计,如建立新能源汽车的数字孪生模型,形成数字孪生映射,对新能源汽车的设计模型进行更新以完善其性能。智能楼宇作为智慧能源系统中的重要部分之一,是典型的产销者。数字孪生技术对智能楼宇中的智慧家具、供冷供热系统等建立多物理场和多尺度的仿真模型,对楼宇的温度、湿度、人员数量和位置等信息进行采集;在可视化平台中,管理人员基于物联网技术可以轻松实现对智能楼宇各子系统的智能化控制,运用 AI 算法实现智能楼宇的运行趋势预测和最优运行策略制定。

3.5 能源存储

在电动汽车充电桩的规划阶段,基于数字城市模型对充电桩的布局进行模拟规划,在满足用户充电需求和市政规划要求的条件下,实现充电桩的最优分布。在充电桩建成后,对每个充电桩进行仿真建模,在虚拟场景中呈现其状态信息,及时监测并反馈到实际运维管理中指导故障的及时处理。对储能设备(如电池、超级电容等)进行多物理场、多尺度数字孪生建模,将这些模型应用于监控和预测储能设备的运行情况,从而实现优化配置。

3.6 能源市场

能源产业的迅猛发展产生了多元化的新型金融市场服务需求,各能源交易公司参与能源市场交易难免存在大量的隐私数据。运用数字孪生技术的信息安全防御机制,对网络信息攻击行为进行特征挖掘,构建与数据完整性攻击相关的最优特征属性集;建立安全风险评估准入机制,联合将能源交易信息的安全风险降到最低。

4. 数字孪生技术的应用案例

面向智慧能源系统的数字孪生技术的研究尽管处于起步阶段,但是从细化到智慧能源系统的单个设备,再扩展到多主体复杂能源系统,都具有广阔的应用前景。

4.1 数字孪生变电设备

大型泵站设备用于抽提水资源,是一个融合电气、信息和控制的综合系统,涉及的子系统包括变电系统、水泵系统、监控系统等。基于数字孪生的泵站设备运行平台,采用数字孪生的“数据链”技术,建立多种部件耦合的多物理场、多尺度数字孪生仿真模型;利用数字孪生泵站可视化管理系统,实现虚拟环境中的仿真与现实的运维无缝衔接,提高企业管理与运维的透明化程度。以变电设备为例(见图 4),构建电、磁、热耦合的多物理场和考虑多时间尺度的数字孪生仿真模型,为大型泵站的设备选型和系统运行提供精细化模型。

变电设备的数字孪生模型

图 4 变电设备的数字孪生模型

4.2 数字孪生电网

数字孪生电网首先对电力网络中的智能设备进行数据采集,随后建立电网的数字孪生模型,实现对电网运行状态的实时感知,进而对电网的健康状态进行评估和预测(如异常检测、薄弱环节分析、灾害预警等)。通过潮流方程(有导纳信息)和数据驱动(无导纳信息)两种驱动模式进行对比,分析验证了数字孪生电网的可行性,证明了当机理模型存在不足时,数据驱动模式仍能得到满足实际运行需求的结果,对数字孪生电网的可行性开展了有益探索。相应数字孪生电网的框架设计图如图 5 所示。

 数字孪生电网框架设计图

图 5 数字孪生电网框架设计图

在能源转型和“互联网 +”背景下,应打破各能源行业的政策壁垒,贯通各能源系统物理连接和交互,建立多种能源优化协调的智慧能源系统。数字孪生技术首先需要构建具有端和云双向数据、信息交互的闭环反馈、优化和决策的支撑平台。该平台是数字孪生技术在智慧能源系统应用的核心环节,有助于解决智慧能源系统发展所面临的技术壁垒和市场壁垒问题,是实现服务的持续创新、需求的即时响应和产业升级优化的有益探索。

优秀案例推荐:

  • 1

鄂ICP备16014868号-1

灵图互动(武汉)科技有限公司版权所有Copyright © 2019-2021